Weijian Li

Portrait of Weijian Li

About

I am a Computer Science PhD student at Northwestern University, supervised by Prof. Han Liu in MAGICS lab. I received my B.S. degree from University of Edinburgh from the program, Artificial Intelligence and Computer Science. My PhD research direction is large time series models, large language models (LLMs) and their applications to scientific discoveries.

Publications

Adaptive Batch Size Schedules for Distributed Training of Language Models with Data and Model Parallelism*

CPAL 2025

Tim Tsz‑Kit Lau, Weijian Li, Chenwei Xu, Han Liu, Mladen Kolar

Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance‑Based Intrusion Detection

NDSS 2025 

Lingzhi Wang, Xiangmin Shen, Weijian Li, Zhenyuan Li, R. Sekar, Han Liu, Yan Chen

RDAS: A Low Latency and High Throughput Raw Data Engine for Machine Learning Systems

arXiv

Weijian Li, Han Liu

SWGA: A Distributed Hyperparameter Search Method for Time Series Prediction Models

arXiv

Weijian Li, Haozheng Luo, Chenwei Xu, Han Liu

A Benchmark Study for Limit Order Book Models and Time Series Forecasting Models on LOB Data

arXiv

Weijian Li, Stephen S. Cheng, Lining Mao, Jigyasa Kumari, Alex Pyo, Mehak Kawatra, Jialong Li, Jiayi Wang, Ammar Gilani, Jingya Xun, Jui‑Hui Chung, Jerry Yao‑Chieh Hu, Han Liu

Communication‑Efficient Adaptive Batch Size Strategies for Distributed Local Gradient Methods

arXiv

Tim Tsz‑Kit Lau, Weijian Li, Chenwei Xu, Han Liu, Mladen Kolar

Outlier‑Efficient Hopfield Layers for Large Transformer‑Based Models

ICML 2024

Jerry Yao‑Chieh Hu, Pei‑Hsuan Chang, Haozheng Luo, Hong‑Yu Chen, Weijian Li, Wei‑Po Wang, Han Liu

DNABERT‑2: Efficient Foundation Model and Benchmark for Multi‑Species Genomes

ICLR 2024

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana V. Davuluri, Han Liu

Multivariate Time Series Forecasting by Graph Attention Networks with Theoretical Guarantees

AISTATS 2024

Zhi Zhang, Weijian Li, Han Liu

STanHop: Sparse Tandem Hopfield Model for Memory‑Enhanced Time Series Prediction*

ICLR 2024

Dennis Wu, Jerry Yao‑Chieh Hu, Weijian Li, Bo‑Yu Chen, Han Liu

BiSHop: Bi‑Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

ICML 2024

Chenwei Xu, Yu‑Chao Huang, Jerry Yao‑Chieh Hu, Weijian Li, Ammar Gilani, Hsi‑Sheng Goan, Han Liu

Feature Programming for Multivariate Time Series Prediction

ICML 2023

Alex Reneau, Jerry Yao‑Chieh Hu, Chenwei Xu, Weijian Li, Ammar Gilani, Han Liu

Interdisciplinary Discovery of Nanomaterials Based on Convolutional Neural Networks

NeurIPS 2022 Workshop

Tong Xie, Yuwei Wan, Weijian Li, Qingyuan Linghu, Shaozhou Wang, Yalun Cai, Han Liu

* denotes co-first author